Tetsushi WATANABE Osami WADA Takuya MIYASHITA Ryuji KOGA
This paper explains a mechanism of common-mode generation on a printed circuit board with a narrow ground pattern. A transmission line has its value of degree of unbalance. At a connection point of two transmission lines having different degrees of unbalance, common mode voltage is generated proportional to the difference, and it drives common mode current. The authors propose a method to evaluate common mode current distribution and verify it by measurement. Although calculated common mode current is larger than measured one by a few dBs, both of them are proportional to the degree of unbalance. An EMI reduction technique, 'unbalance matching,' is also proposed.
This paper is consisting of the two novel EMC technologies that we have been developed in our laboratory. The first is the technology for measuring the RF (Radio Frequency) nearby magnetic field and estimation of the RF current in the printed circuit board (PCB) by using the small loop antenna with multi-layer PCB structure developed by our laboratory. I introduce the application of our small loop antenna with its physical structure and the analysis of the nearby magnetic field distribution of the printed circuit board applying the discrete Wavelet analysis. We can understand the behavior of the digital circuit in detail, and we can also take measures to meet the specification about the electromagnetic radiation from the digital circuit from the higher order of priority by using these technologies. The second is our proposing novel technology for reducing the electromagnetic radiation from the digital equipment by taking notice of the improvement of the de-coupling in the PCB. We confirmed the remarkable effect of this technology by redesigning the motherboard of the small-sized computer.
Takashi HARADA Hideki SASAKI Yoshio KAMI
This paper analyzes mechanisms of radiated emissions from multilayer printed circuit boards (PCBs) and presents a model to describe the characteristics of such radiation. The radiation mechanism from a four-layer PCB, including the internal power and ground planes, is investigated using a time-domain magnetic field measurement near the PCB. Measurement of the waveform indicates that the main source of radiation is in the power distribution planes. To investigate the characteristics of the radiation from the power distribution, the S21s of the board are measured; the board impedance and the transmission characteristics of the power distribution planes are found to be directly related to the S21 between the two points in the board. The results indicate that the power distribution acts as a transmission line at frequencies higher than 100 MHz. A model that can explain well the radiation properties of these planes treats them as a parallel-plate transmission line interconnected by decoupling circuit comprising a decoupling capacitor and interconnect inductance. From the transmission line theory it is deduced that the line resonance gives rise to strong radiated emissions. The interconnect inductance is an important factor in determining the radiation characteristics.
Hiroki OKA Nobuaki SUGIURA Kei-ichi YASUDA
B-ISDN telecommunication systems will require signal processing speeds up to 600 Mbps or more. We must therefore consider the affects of signal reflection, signal attenuation, time dalay, and so on when designing these systems. The higher the signal speed, the larger the electrical noise induced around the connector, especially in the plated through holes (PTHs) area. This paper presents the results of our investigation focused on connector mounting configurations in the signal transmission line, especially whether or not signals transmit through the PTH in a printed circuit board (PCB). How the signal reflection characteristics depend upon transmission line configurations are discussed and experimental results and simulation analyses for a transmission line system using a small miniature A-type (SMA) connector as an example are performed. It is suggested that designs for future high-speed signal transmission circuits take into account the PTH diameter and/or the PTH pitch conditions, values for which can be determined from simulation analysis.
Takuya MIYASHITA Osami WADA Ryuji KOGA Hiroya SANO
Concerned is a spectral profile of electromagnetic (EM) emission from a signal line on a high-speed digital circuit. The authors have proposed and examined an a priori method to predict the peak frequencies on spectral profile of EM emission from printed circuit boards (PCBs). Profile of an EM spectrum is determined by the resonance of digital circuits. It is the purpose of this paper to investigate the parameters that determine the spectral profile of EM emission from a signal line on a PCS. In this paper, measurements and calculations of EM spectra were carried out for different load capacitances. EM emissions were measured with a small loop antenna at a 50mm from the surface of the PCB. Measured EM spectra had two peaks. Calculated EM spectra, which was based on transient current given by the analog simulator SPICE, had two peaks too. Results of calculations of EM spectra for different internal capacitances of an IC tell that lower peak frequency is determined by the resonance frequency of the resonant loop which is composed of an IC package and a decoupling capacitor. Comparison with measured EM spectra and calculated EM spectra for different load resistances tell that sharpness of the other peak depends on Q factor of a resonant loop which includes a signal line. Therefore the peak frequencies of EM emission spectrum can be predicted as two resonance frequencies of two resonant circuits.
Masanari TANIGUCHI Junichi FUKUDA Tasuku TAKAGI Isamu AKASAKI
The authors developed new measuring system (Holographic Pattern Measuring System [HPMS]), which is composed of both techniques of holography and graphic image processing, was used to measure the vibrations of a printed circuit board (PCB) due to operation of a mounted electromagnetic relay on it. The clear vibration patterns were obtained. By using pattern analysis processor, quantitative vibration patterns of the PCB surface were observed. Both the vibration patterns and displacements were changed by edge fixing way of the PCB.
Mechanism for radiation phenomenon caused by a finite-length transmission line is discussed. Coupling of an external wave to a transmission line has been studied by using a circuit concept because of a TEM transmission. Since the relationship between coupling and radiation is reciprocal, radiation can be treated by using the circuit concept. It is shown that the equations obtained by using the field theory are quite coincident with those by the circuit theory. From the resultant, it can be concluded that the radiated fields are composed of those by the line current of TEM and the terminal currents. A method for an application of the circuit concept to radiation due to a trace on a printed circuit board is studied by comparing the experimental results.